
www.elsevier.nl/locate/jnlabr/yjfls
Journal of Fluids and Structures 18 (2003) 455–465

Numerical solutions of a viscous uniform approach flow past
square and diamond cylinders

C. Daltona,*, W. Zhengb

aDepartment of Mechanical Engineering, University of Houston, Houston, TX 77204-4006, USA
bConsultant, Houston, TX, USA

Received 28 November 2002; accepted 11 July 2003

Abstract

Numerical results are presented for a uniform approach flow past square and diamond cylinders, with and without

rounded corners, at Reynolds numbers of 250 and 1000. This unsteady viscous flow problem is formulated by the 2-D

Navier–Stokes equations in vorticity and stream-function form on body-fitted coordinates and solved by a finite-

difference method. Second-order Adams-Bashforth and central-difference schemes are used to discretize the vorticity

transport equation while a third-order upwinding scheme is incorporated to represent the nonlinear convective terms. A

grid generation technique is applied to provide an efficient mesh system for the flow. The elliptic partial differential

equation for stream-function and vorticity in the transformed plane is solved by the multigrid iteration method. The

Strouhal number and the average in-line force coefficients agree very well with the experimental and previous numerical

values. The vortex structures and the evolution of vortex shedding are illustrated by vorticity contours. Rounding the

corners of the square and diamond cylinders produced a noticeable decrease on the calculated drag and lift coefficients.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A uniform approach flow past a bluff cylinder generates a periodic, alternating shedding of vortices from the body

above a minimum value of Reynolds number (Re ¼ Ud=n). The Strouhal number (St ¼ fd=U) characterizes the

frequency of vortex shedding. In these two definitions, f is the shedding frequency, d is the cylinder diameter or side, n is
the kinematic viscosity, and U is the uniform approach velocity. Our main objective in this numerical study is to obtain

drag and lift coefficients and examine the effects of rounding the corners on square and diamond cylinders on these

coefficients. The application of this square-cylinder study will be primarily toward the design of offshore structures.

Even though our Reynolds numbers, up to 1000, are much smaller than the values expected in practice, insight will be

gained on the effects of rounding the corners.

There are some experimental and numerical studies of the vortex-shedding flow past rectangular cylinders: however,

few quantitative experimental studies can be found which include in-line force and lift coefficients. Delaney and

Sorensen (1953) performed one of the earliest experimental studies on square and diamond cylinders, as well as other

cylindrical shapes. However, this study concentrated on determination of drag coefficients and did not report any lift

coefficient data and, to use their own terminology, meager Strouhal number data. Since the Delaney and Sorensen

study was at Re values much higher than those for which any accurate computational studies are available, we will not

include further reference to this study in spite of its relevance to the overall subject.
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Relevant computational studies at similar values of Re for flow past a square cylinder have been reported by Davis

and Moore (1982). Franke et al. (1990), Kim and Benson (1992), Okajima et al. (1992), Saha et al. (2000), and Sohankar

et al. (1995, 1997, 1998). Experimental studies for similar values of Re have been by Davis and Moore (1982), Okajima

(1982), and Norberg (1993). The only study found for a diamond-shaped cylinder (or a square cylinder with the flow at

a 45� angle of attack) is by Torii et al. (2000). The effort by Torii et al. covered both experimental and numerical

descriptions of the problems. All of the above studies were for square-cornered cylinders. The only study found that

dealt with rounded corners was by Tamura et al. (1990). However, this study was for a square cylinder at Re ¼ 105; but
which included no turbulence modelling, even at this large a value of Re:
There have been many studies, both numerical and experimental, that have considered flow past square cylinders at

higher values of Re: Various forms of turbulence modelling have been included in most of the higher Re studies.

However, our emphasis here is the contrast between square and rounded corners for both square- and diamond-shaped

cylinders. Thus, our review does not include any higher Re cases, but was restricted to those cases that can be and have

been modelled as viscous flow solutions. This study is a continuation of our earlier effort on oscillating flow past

cylinders with sharp corners (see Zheng and Dalton, 1999).

With the aid of powerful computational facilities and advanced numerical techniques, including the grid generation

technique and the multigrid method, the present study provides a general and robust approach to investigate viscous

flow past bluff bodies, which is concentrated on square cylinders. This numerical study will be concerned with uniform

approach flow for a viscous fluid. The pattern of vortex shedding and the variation of the force coefficients as well as the

Strouhal number will be investigated.

2. Mathematical formulation

The uniform approach flow of a viscous incompressible fluid past a square cylinder is considered. The governing

equations for a 2-D unsteady flow are the Navier–Stokes equations in the vorticity and stream-function form, which can

be expressed nondimensionally in Cartesian coordinates as

ot þ cyox � cxoy ¼
1

Re
ðoxx þ oyyÞ; ð1Þ

cxx þ cyy ¼ �o; ð2Þ

where the Reynolds number, Re; was defined earlier, c is the 2-D stream function, and o is the z-direction vorticity. For

the uniform approach flow past the cylinder, the boundary conditions are

c ¼
qc
qn

¼ 0; o ¼ ob on the cylinder; ð3Þ

c ¼ cp; o ¼ 0 far from the cylinder; ð4Þ

where n is the unit normal to the surface of the cylinder. The vorticity distribution on the surface of the cylinder is ob

and is determined by imposing the no-penetration and no-slip boundary conditions on the Poisson equation, Eq. (2).

The starting solution for the stream function for potential flow past the rectangular cylinders is cp and is obtained

through the Schwartz-Christoffel transformation.

For a bluff body in a doubly connected region R bounded by an arbitrary contour G; a branch cut in the physical

plane is introduced to generate a simply connected rectangular computational domain. A one-to-one transformation

from the physical plane (x; y) to a generalized curvilinear coordinate plane (x; Z) is established to make the segments of

the boundary contour in the physical plane coincide with particular curvilinear coordinate lines in the transformed

plane, which is defined by

x ¼ xðx; ZÞ; y ¼ yðx; ZÞ: ð5Þ

Under the coordinate transformation, the governing Eqs. (1) and (2) can be mapped into the corresponding

equations containing partial derivatives with respect to x and Z as follows:

1

KC
ot þ

1

J
ðcZox � cxoZÞ ¼

1

Re
%Do; ð6Þ

%Dc ¼ �o; ð7Þ
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where the operator %D is defined by

%DA ¼
aAxx � 2bAxZ þ gAZZ

J2
þ ð1=J3Þ

� ½ðaxxx � 2bxxZ þ gxZZÞðyxAZ � yZAxÞ þ ðayxx � 2byxZ þ gyZZÞðxZAx � xxAZÞ	 ð8Þ

with A as either c or o: The transformation parameters are

J ¼ xxyZ � xZy; a ¼ x2
Z ¼ y2Z; b ¼ xxxZ þ yZyx; g ¼ x2

xy2x: ð9Þ

The boundary conditions under the transformation become

c ¼
gð1=2ÞcZ

J
¼ 0; o ¼

gcZZ

J2
; both on Z ¼ 0 ð10Þ

and for a uniform approach flow,

c ¼ cp; o ¼ 0 both on Z ¼ 1: ð11Þ

The periodic boundary conditions are imposed on x ¼ 0 and x ¼ 1: The initial conditions are

c ¼ cp; in the flow field for a uniform approach flow: ð12Þ

The pressure coefficient is derived from the integration of the momentum equation along the surface of the cylinder,

which is given in the transformed plane by

Cp ¼
1

Re

Z x

0

1

J
ðbox � gonÞdx: ð13Þ

The in-line force and lift coefficients in the transformed plane are denoted by CF and CL; respectively, and are

given by

CF ¼ 2

Z 1

0

yxCP �
1

Re
xxo

� �
dx; ð14Þ

CL ¼ �2
Z 1

0

xxCP þ
1

Re
yxo

� �
dx: ð15Þ

3. Numerical implementation

In the present computation, the grid systems are produced by GENIE2D, a grid-generation package created at the

NSF Engineering Research Center at Mississippi State University, using the algebraic grid generation method [see

Thames et al. (1977)]. The grid system for a square cylinder with rounded corners is shown in Fig. 1. Apart from the

grid concentration very close to the body surface in the radial direction, grid concentration is also arranged locally near

the four sharp corners of the square cylinder to increase numerical resolution near the corners with very large gradients

of velocity and vorticity. All of the transformation derivatives and parameters in Eq. (9) are approximated by second-

order central-difference expressions.

The vorticity transport equation is explicitly discretized in time by using the second-order Adams-Bashforth scheme.

All of the spatial discretizations are second-order central-difference schemes except the convective terms. The third-

order upwinding scheme proposed by Leonard (1979) is applied to approximate these convective terms. Due to the

existence of mixed derivatives and variable coefficients in the elliptic partial differential Eq. (7), it is impractical to solve

this equation by using the spectral method incorporating the FFT algorithm with high efficiency. The multigrid

iteration method is a very efficient approach to solve Eq. (7).

A multigrid solver, developed by Sanders (1992) for the 2-D Helmholtz equation, was used for this solution; it is of

the form

ðaðxÞruÞ � au þ gðxÞ ¼ 0; ð16Þ

where aðxÞ; f ðxÞ and uðx; yÞ are arbitrary functions and a is a constant. In the present study, the multigrid solver has

been developed to solve a 2-D elliptic partial differential equation with mixed derivatives, first-order derivatives and the

variable coefficients,

a1uxx þ a2uxy þ a3uyy þ a4ux þ a5uy þ a6u þ g ¼ 0; ð17Þ
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where a1; a2; a3; a4; a5; a6; g; and u are arbitrary functions of x and y: For viscous flow past rectangular cylinders, the grid

system is characterized by discontinuous transformation derivatives near the four sharp corners, which correspondingly

lead to the strongly discontinuous coefficients in Eq. (9). This multigrid solver has the capability of solving elliptic

partial differential equations with discontinuous coefficients. It has been shown in various numerical tests (see Zheng

and Dalton, 1999) that this same multigrid solver has a solid dependability of accurately solving elliptic partial

differential equations with higher efficiency than SOR iteration method with Chebyshev acceleration. The multigrid

solver has been optimized herein at more than 350megaflops on the Cray C90 at the (now defunct) Pittsburgh

Supercomputing Center.

The vorticity boundary condition in Eq. (10) on the body surface can be expressed in terms of the stream function in

the interior mesh points with second-order accuracy using the Taylor series expansion with the implication of the no-

slip condition,

oi;1 ¼
gi;1

ðJi;1DZÞ
2
ð7ci;1 � 8ci;2 þ ci;3Þ=2; ð18Þ

where DZ is the grid spacing in the Z direction in the transformed plane.

4. Results and discussion

A detailed discussion of convergence is presented in Zheng and Dalton (1999) where the analysis is for an oscillating

flow rather than a uniform approach flow. The largest Reynolds number, based on the maximum oscillatory velocity,

was about 2350 in the Zheng and Dalton study. Three grid sizes were tested (65� 65, 129� 129, and 257� 257) and two

types of grids were examined for the circumferential direction (uniform and a hyperbolic tangential distribution with
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Fig. 1. Grid system for a cylinder with rounded corners.
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local grid concentration near the corners). The local grid concentration caused a near corner decrease of the uniform

grid size by a factor of four. The calculations for the 257� 257 grid were done on the Cray C90 at the Pittsburgh

Supercomputing Center and the NEC SX4 at the NEC location in The Woodlands, TX while the others where done in

double precision on an SGI Indigo R4000 at the University of Houston. Comparison between experimental and

calculated values of drag coefficient revealed that use of the 129� 129 grid with local grid concentration, was sufficient

to get an accurate solution. This observation has also been justified in Zheng and Dalton (1999). Results from the three

different grids, with and without local grid concentration, are shown in the Zheng and Dalton study. These results also

revealed that the 129� 129 grid was sufficient for convergence. The convergence calculations were not repeated for the

uniform flow case.

Another feature of the study is the use of the multigrid solver applied to Eq. (8), which also contains mixed

derivatives. Fig. 2 shows a comparison for the 129� 129 grid of the L2 and LN norms for both the multigrid solver and

the SOR method with Chebyshev acceleration. It is quite clear that the multigrid method is much more efficient than the

SOR method for this problem; convergence is obtained in one-fourth the number of iterations. This is another strong

example of the utility of the multigrid method.

Table 1 presents the results for the two values of Reynolds number considered, Re=250 and 1000, for the square-

and rounded-edge square and diamond cylinders. The rounded corners have a radius of d=8: Even though tabular

results are available for Re=250, graphical results are presented only for Re=1000. These results for Re=1000 are also

shown in Figs. 3–6. Figs. 3 and 4 show that the drag coefficient has a higher harmonic for both corner configurations.

Fig. 3 shows that the lift coefficient is responding at the vortex shedding frequency for the square corner case and

includes (see Fig. 4) higher harmonic behavior when the corners are rounded. The opposite effect is noted for the

diamond cylinder. Fig. 5 shows the square-cornered result which shows a fairly prominent beating effect in both lift and

drag. When the corners are rounded (Fig. 6) the beating effect is diminished, especially so for the lift behavior.

As seen in Table 1, there is a striking decrease in the value of CD when the corners are rounded. We attribute this

decrease in drag coefficient to the increase in wake pressure for each rounded-corner case. The separating shear layers

for each rounded-corner case are not deflected as far from the cylinder as for the square-corner cases. This suggests that

the shear layer rollup is not as intense as for the square-corner cases which results in the wake pressure being slightly less

negative. This wake-pressure explanation is also supported by the very slight increase in Strouhal number for each case.

The increase in shedding frequency means that the vortices being shed in the rounded-corner cases are being shed

sooner than those for the square-cylinder cases as is shown in Table 1 in the higher Strouhal number values for the

rounded-corner results. The implication is that the wake pressures have less time to be influenced by the roll-up of the

attached shear layers. The r.m.s. lift coefficient decreases over 50% for the diamond cylinder at both Reynolds numbers

when the corners are rounded. The decrease in r.m.s. lift coefficient for the square cylinder case was only about 8%

when the corners were rounded. We attribute this larger decrease (due to rounding) for the diamond cylinder to the

slight change in the velocity profile at separation. The separation point for the square-cornered diamond cylinder is

fixed at the sharp corner. Conversely, the rounded-corner case, even at the slight rounding (d=8) considered herein,

provides a slight change in pressure gradient prior to separation. The separating shear layer, with rounding, leads to a

less intense shear layer rollup. The result is a lessening of the transverse pressure differences during vortex shedding;
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Fig. 2. Comparison of accuracy and efficiency between the multigrid and SOR solvers on a 129� 129 grid.
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hence, the transverse force decreases for the rounded-corner diamond-cylinder case. The same effect for the square

cylinder is much less because the separating shear layer has no streamwise momentum of its own for either the square or

rounded-corner cases when separation occurs. This means that the strength of the separating shear layer is virtually

unaffected by rounding the corners. The comparison to other results, both experimental and comparison is very good in

some cases and poor in others. In fact, there is a noticeable lack of agreement between results of other investigators as

well.

4.1. Uniform approach flow past square cylinders

The computation of uniform approach flow past a square cylinder is carried out on a 129� 129 grid at Re=250 and

1000. The grid distribution is uniform in the circumferential direction and exponential in the Z direction with the

minimum mesh size equal to 0.02 in the transformed plane. Convergence is discussed earlier herein and in Zheng and

Dalton (1999). The maximum dimensionless distance between the center of the cylinder and the outer boundary is 25
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Fig. 3. Force coefficients versus time for a square cylinder with square corners at Re=1000.

Table 1

Calculated and experimental values

Source Re St CD CL;r:m:s: Type

Present (c) 250 0.16 1.8 0.36 Square, square

Present (c) 250 0.21 2.75 0.56 Diamond, square

Present (c) 250 0.22 1.7 0.22 Diamond, rounded

Present (c) 1000 0.15 2.5 0.85 Square, square

Present (c) 1000 0.16 1.75 0.8 Square, rounded

Present (c) 1000 0.2 2.25 0.8 Diamond, square

Present (c) 1000 0.21 1.65 0.35 Diamond, rounded

Saha et al. (2000) (c) 250 0.142 1.77 Square, square

Davis and Moore (1982) (c) 250 0.165 1.77 Square, square

Franke et al. (1990) (c) 250 0.141 1.67 0.81 Square, square

Okajima (1982) (e) 250 0.141 Square, square

Okajima et al. (1992) (e) 500 0.13 2.1 B1.13 Square, square

Norberg (1993) (e) 300 0.14 Square, square

Norberg (1993) (e) 1000 0.13 Square, square

Sohankar et al. (1995) (e) 200 0.149 1.45 0.36 Square, square

Sohankar et al. (1997) (c) 400 0.13 Square, square

Sohankar et al. (1998) (c) 500 0.126 1.87 1.13 Square, square

Torii et al. (2000) (c) 250 0.11 Diamond, square

Schlichting (1985) (e) 250 0.19 Diamond, square

Note: In the first column, (c) means calculated and (e) means experimental. In the last column, the first word is the cylinder shape and

the second word describes the corner configuration.
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cylinder sides and the side of the square (or diamond) cylinder is specified as 1. The time step Dt is 0.002. The 129� 129

grid used in the present study is about four times that in Davis and Moore (1982). To promote an earlier onset of vortex

shedding, a small perturbation is imposed on the body surface of the cylinder, i.e., a constant value of c ¼ 0:005 instead
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Fig. 4. Force coefficients versus time for a square cylinder with rounded corners at Re=1000.

Fig. 5. Force coefficients versus time for a for a diamond cylinder with square corners at Re=1000.

Fig. 6. Force coefficients versus time for a for a diamond cylinder with rounded corners at Re=1000.
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Fig. 7. The wall vorticity versus y for the square cylinder with square corners at Re=1000.

Fig. 8. The near field plots of vorticity contours (a) and streamlines (b) for the square cylinder with rounded corners at Re=1000.
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of zero. The perturbation is removed at time beyond 5, and the inertial effect caused by the small perturbation will

vanish as time advances. This same procedure has been used in most of our previous studies and has been found to be

very effective.
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Fig. 9. The pressure coefficient versus y for the square cylinder with square corners at Re=1000.

Fig. 10. The wall vorticity versus y for the diamond cylinder with square corners at Re=1000.

Fig. 11. The pressure coefficient versus y for the diamond cylinder with square corners at Re=1000.
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Fig. 7 presents the wall-vorticity distribution at Re=1000 and t ¼ 100; 101.5, and 103 for the square-corner cases.

The variation of the wall-vorticity distributions has a singular-like distribution at the two front sharp corners of the

cylinder. There is a clear indication of separation (due to the sharp change in sign of the wall vorticity) at 45� from the

leading edge of the body At 135�, i.e., the rear corners of the cylinder, there again is evidence of separation, but with a

time-dependent behavior, in contrast to the upstream corners. The drag and lift coefficients are smooth, periodic and

symmetric about the axis of the onset-flow direction at time beyond t ¼ 100; as shown in Fig. 3. The appearance of the
sub-harmonic in the variation of the drag coefficient at Re=1000 is similar to the numerical results obtained by Davis

and Moore (1982). A near-field view of the wake structure at Re=1000 is shown in Fig. 8. The Strouhal number is

calculated through averaging over a range of vortex-shedding periods which is defined as the time between adjacent

peaks in the lift curve, regardless of amplitude variations. It is found that the Strouhal number has little change after

averaging more than 20 periods of vortex shedding at time beyond 100. Comparisons of the Strouhal number and the

average in-line force coefficient to several experimental and numerical results are shown in Table 1 and are in

reasonable agreement. The pressure coefficient plot for this case is shown in Fig. 9 where we see that there is a sharp

increase in pressure immediately after separation at the upstream corners. The pressure along the two parallel sides of

the cylinder is relatively constant as would be expected, but with a time-dependent influence. This plot is typical of

pressure coefficient behavior due to periodic vortex shedding.

4.2. Uniform approach flow past a diamond cylinder

Fig. 10 shows the wall vorticity at Re=1000 and t ¼ 100; 101.5, and 103 for the square-cornered diamond cylinder.

In this case, separation takes place at 90� on either side of the upstream apex of the cylinder. There is a considerable

time-dependent difference in the wall vorticity at the downstream apex.

The diamond cylinder pressure coefficient plot is shown in Fig. 11 where even the pressure values upstream of

separation show some time dependence. The wake pressure for the diamond cylinder shows considerably more

variation across the wake in both time and position when compared to the square-cylinder result in Fig. 9. This plot

shows a sharp change in pressure at separation on each upstream side of the diamond cylinder. This pressure coefficient

is also typical for periodic shedding of vortices.

5. Conclusions

Numerical solutions of a viscous uniform approach flow past square and diamond cylinders are obtained from

solving the 2-D Navier–Stokes equation in the vorticity/stream-function formation on body-fitted coordinates. A

uniform approach flow past a square cylinder is simulated for Re=250, 1000. At Re=250, the in-line force and lift

coefficients are smooth, periodic and symmetric with respect to the axis of the onset-flow oscillation. At Re=1000, the

appearance of the sub-harmonic in the variation of the in-line force coefficient is similar to the numerical results

obtained by Davis and Moore (1982). Comparison of the Strouhal number between the calculated results and the

experimental values obtained by Davis and Moore is in reasonable agreement, as are the calculated average in-line force

coefficients.

Calculations are done for both square- and rounded-corner cases. Even though the wake at Re=1000 is clearly

turbulent, no turbulence modelling was included. Our purpose was to compare the effects of slight rounding of the

corners of the two cylindrical configurations. The results show a considerable effect due to the rounding of the corners,

more so for the diamond cylinder than the square cylinder. Even though no turbulence model was incorporated, the

upwinding scheme provided a pseudo-LES description. However, we do recognize that turbulence modelling is

necessary to gain an accurate solution, even at Re=1000.

Even though the results presented herein are for a 2-D viscous flow, it is possible to extend this analysis to include a 3-

D LES model as is done in Lu et al., 1997 for flow past a circular cylinder. The results strongly indicate that rounding

the corners of both square and diamond cylinders has the effect of decreasing the lift and drag for both configurations.

The effect on the lift is noticeably greater for the diamond orientation.
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